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1956, 1957, 1958) may then be employed to determine 
more accurately the values of all the phases. 

We note finally that complex crystal structures, in 
particular protein structures, often satisfy (at least ap- 
proximately) the present hypothesis II, as well even as 
our earlier hypothesis (1966). We therefore anticipate 
that the methods described here and in the earlier 
paper may eventually find application in the elucida- 
tion of such structures. 
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The sensitivity of the higher-moment test for detection of centrosymmetry to errors in the intensity 
data is examined. The errors considered are (1) random errors proportional t o / ,  (2) systematic errors 
of the type Io=kS, [1 -exp  (-I lk ,r)] ,  (3) errors associated with the non-observance of very weak 
reflexions, and (4) errors systematic in sin 0. Mathematical expressions are obtained in a compact form 
for (z ") including the effect of errors in all the cases except (4). Tables of (z" ) with errors are given. 
It is found that it would not be profitable to use moments of very high order such as (z4) or (zS) but 
that the higher-moment test is relatively safe for crystals whose weighted reciprocal lattice contains a 
large percentage of very weak reflexions. 

Introduction 

Various statistical criteria based on the statistical 
distribution of X-ray intensities have been used to 
distinguish between centrosymmetric and non-centro- 
symmetric crystals (or projections). Deviations from 
Wilson's (1949) distributions occur for various reasons 
such as the presence of a few dominating atoms, 
pseudo-symmetry, etc., and the distributions of inten- 
sities in these special cases have been considered by 
various authors. The distributions obtained in prac- 
tical cases may also deviate from Wilson's distribu- 
tions (even in the absence of the above mentioned 
disturbing features which are structural in nature) 
because of the use of inaccurate intensity data, i.e. 
intensity data with errors of observation. Rogers, 
Stanley & Wilson (1955, hereafter referred to as 
R-S-W) have considered the effect of errors of various 
kinds in the original intensity data on the statistical 
criteria such as the cumulative distribution function 
N(z), the test-ratio 0 of Wilson, and the specific vari- 
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ance, v, with the aim of finding a rough upper limit 
for the discrepancy that can be allowed in practical 
cases where intensities with the errors of observation 
are involved. This enables one to avoid correlating 
such deviations (i.e. the statistical anomalies arising 
from the use of inaccurate intensity data) with struc- 
tural peculiarities. In the present paper we shall study 
the effect of errors in the intensity data on the higher- 
moment test which has been proposed by Foster & 
Hargreaves (1963a, b) and independently by Srinivasan 
& Subramanian (1964). The additional advantage of 
the higher-moment test over other statistical criteria 
is that the exact theoretical values of the higher mo- 
ments can be obtained under very general conditions 
(Foster & Hargreaves, 1963a, b). We shall however 
consider here only the equal-atom-random-position 
case as has been done by R-S -W since this would suf- 
fice to show the influence of intensity errors on the 
higher-moment test. 

A second aim of the present investigation is to study 
the sensitivity of the various higher moments to the 
errors of intensity data; such a study may therefore 
provide some guidance regarding the choice of a par- 
ticular higher moment as optimum in practical cases. 
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As in R - S - W ,  we shall consider mainly four kinds of 
error in the intensity data, viz. (1) random errors 
proport ional  to the intensity, (2) systematic errors in 
I of the form Io=k Z [ 1 - e x p  ( - I / k  S)], (3) errors 
associated with the non-observance of very weak re- 
fexions,  and (4) errors systematic as a function of 
s (=sin O/2). 

The notat ion in this paper closely follows that  of 
R - S - W  and the relevant quantities may be defined as 
follows: 
I = true (error-free) value of the intensity of a reflexion 

H (=hkl) 
Io = observed value of the intensity of  the reflexion H 
z =I/(I)=true value of  the normalized intensity of 

the reflexion H 
zo = Io/(Io) = observed value of the normalized intensity 

of  a reflexion H 

( I ) = Z  ~ 

g1=(Io)/(I) (I) 
and 

Zo=Ioz/(Igl) . (2) 

We shall presently obtain the values of (Zo')in the pre- 
sence of  each one of these errors. 

The influence 
of random errors on the higher-moment test 

We shall assume that  the error in the intensity is pro- 
port ional  to L That  is 

Io=I(l +A) (3) 

where A is normally  distributed with ( A ) = 0  and 
( A 2 ) = o  "2. That  is 

P(A)=(2na]) -~ exp (-Az/Za]) . (4) 

F rom (3) we have 

(I"o)=(In(1 + A)n). (5) 

Since I and A have no correlation (see R - S - W )  we can 
write (5) as (In)=(In)((l  +A)n), (6) 

which gives for n =  1, in the light of ( A ) = 0 ,  that  
(Io)=(I)  as would be required. Equation (6) can 
therefore be written 

(zg) = ( z - )  ((1 + ~)"5,  

which, on application of the binomial theorem, be- 
comes 

n 

where ( j )  is the binomial  coefficient defined by 

(n) n, 
j = j ! (n - j ) !  " (8) 

F rom (4) we obtain 

={ n-*(2a])'/21-'(j-~+21)ifj=even'O i f j =  o d d .  (9) 

F rom (7) and (9) we have 

n (z'~) = (zn) [ ~  ( j  ) (2°'2)J/zl/n ( J 2 1  ) " ] 
F - -  I (10) 

where the prime on the summat ion symbol denotes 
that  terms for which j is odd take the value zero. For  
simplicity we write (10) as 

(zg)=con(zn) , (11) 
where 

c o n = s ' ( n )  (2a])'/z ( J 2  1 ) 
j=0 j 1/- r -  . (12) 

It  is clear that  con represents the fraction by which 
(z~) exceeds (zn).  When aa---~0, con--~ 1 so that  
(Zo')--+ (z n) as required. The expressions of con for 
n = 2 ,  3, 4 and 5 are given below: 

coz= 1 +a,]  (13a) 

o93 = 1 + 3a~ (13b) 
o04= 1 + 6 a ] +  3 ~  (13c) 
co5 = 1 + 10a] + 1 5 4 .  (13d) 

The values of  the higher moments  (zo') for n = 2 ,  3, 4 
and 5 are given in Table 1 for various values of  aa 
viz. aa =0 ,  0.1, 0.2, . . . ,  0'7 for both  centrosymmetric  
and non-centrosymmetr ic  crystals. A study of  this 
table reveals the following: 

Table 1. Values of the higher moments of the normalized intensity as a function of cr a 
C= Centrosymmetric crystal 
A = Non-centrosymmetric crystal 
Subscript n to A or C denotes the nth moment 

~A A2 C2 /13 C3 A4 C4 A5 C5 
0"0 2"00 3"00 6"00 15"00 24"00 105"0 120"0 945 
0" 1 2"02 3"03 6" 18 15"45 25"45 111"3 132"2 1041 
0"2 2"08 3"12 6"72 16"80 29"88 130"7 170"9 1346 
0"3 2"18 3"27 7"62 19"05 37"54 164"3 242"6 1910 
0"4 2"32 3"48 8"88 22"20 48"88 213"9 358" 1 2820 
0"5 2"50 3"75 10"50 26"25 64"50 282"2 532"5 4193 
0"6 2"72 4"08 12"48 31 "20 85"17 372"6 785"3 6184 
0"7 2"98 4"47 14"82 37"05 111"85 489"3 1140"2 8987 
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(i) For a given a,j the percentage error in <Zo ~) in- 
creases as n increases. For example, when a a = 0-2, the 
percentage errors in (Zo") are respectively 47o, 127o, 
247o and 427o for n=2 ,  3, 4 and 5. Thus, in practical 
cases it seems better to confine ourselves to the second 
or third moments of z. 

(ii) For a given n, as an increases, the percentage 
error in (z~) increases as required. 

(iii) Even when era is as high as 0.3, a non-centrosym- 
metric crystal cannot be mistaken for a centrosym- 
metric crystal. Ambiguities and wrong assignments 
may arise when cr a > 0"3. 

The influence of systematic errors 
on the higher-moment test 

We shall consider the systematic error in the intensity 
as a function of intensity as given by the relation (see 
R-S-W) 

Io=k Z [1 - exp  ( - I / k  Z')]. (14) 

It is clear that as k - +  c~o, Io ~ L Following R-S-W, 
we write 

z ' = I o / ( I ) = g l z o = k [ 1 - e x p  ( - z / k ) ] ,  (15) 

where O<z'<k.  We shall first consider the non- 
centrosymmetric crystal. 

Non-centrosymmetric crystal 
It has been shown that z' is distributed in accordance 

with (see R-S-W):  

e ( z ' ) = ( 1 - z ' / k )  Ic-1, O<z' < k .  (16) 

Since (Zo)= 1, it is clear that 

( z '~=(glzo)=g~=k/(k  + 1) (17) 

as obtained in R-S-W. From (15) and (16) we obtain 

1 1 ( ( z ' " ) =  kz'n 1-- dz'. (18) (zg) = g---~- g--~- ,Jo 

Making the substitution x=z ' / k ,  (18) can be shown 
to be 

(z~)=k(k  + 1)nB(n + 1,k).  (19) 

where we have used (17). Since we have [see equation 
(4), p.31 of Rainville, 1960] 

lim 
r(n) = k-~oo knB(n' k) . 

We obtain from (19): 

lim lim k ( k +  1) n 
k--+oo (z~°) = k-+c~ k n+x r(n+ 1)=r(n+ 1)= (z") 

as required. Equation (19) can be written 

(z~> =an( l )  (zn>, (20) 

where 
k (k+  1) r (k)  (21) 

0~n(1)= I'(n6-k6-1) " 

The expressions of c~n(1) for n=2 ,  3, 4 and 5 are given 
below: 

k + l  
0~2(1) - k + 2 (22a) 

(k + 1)2 
~3(1) = ( k + 2 ) ( k + 3 )  (22b) 

(k 6-1)3 
0~4(1) = (k 6- 2) (k 6- 3) (k +4)  (22c) 

(k6- 1) 4 
~s(1) = (k + 2)(k + 3)(k +4) (k  + 5) " (22d) 

Centrosymmetric crystal 
It has been shown (see R-S-W) that z' is distributed 

in accordance with: 

(1-z'/k)lc/2-1 
e(z ' )  = [21rk loge(1-z ' / k ) -q  ~ ' O<z' <_k (23) 

and that 
g l = ( z ' ) = k [ 1 - { k / ( k + 2 ) } * ] .  (24) 

The nth moment of zo is given by 

1 ( z ' n )=  1 S2 z'n(1-z'/k)~/2-1dz' 
(zg) = g--~- g--~f [21rk loge(1-z ' /k)- l]  ~ ' 

which on substitution, 1 - ( z ' / k ) =  exp (-pZ), simplifies 
to 

(Zo ~) = - exp ( - p2)]n exp ( - kp2/2)dp. 
(25) 

Using the binomial theorem, (25) can be written 

exp [ - f ( j + ½ k ) ] d p  

_ k n+* ,~ ( n ] ( _ 1 ) 1  1 (26) 
g]' j=0 _j / V'2j'-----+ ~:: 

It is possible to show that 

lim 
k -~oo (z"°)=(zn) (27) 

as would be required (see Appendix). The expressions 
for (zg) for n = 2, 3, 4, and 5 can be written 

(z~) = (k/gx) 2 ]/k (Co- 2c1+ c2) (28a) 
(z~) = (k/gl) 3 Vk (Co- 3cl + 3cz-c3) (28b) 

(z4)=(k/gl) 4 I/k(eo-4Cx+6e2-4e3+c4) (28e) 
(Z5o) = (k/gl) s l/k (c0-  5c1+ 10c2-10c3+ 5c4- c5) 

(28d) 

where we have used the simplifying notation c j= 
(2 j+k)  -~. The values of (zg) for n=2 ,  3, 4 and 5 for 
the centrosymmetric and non-centrosymmetric crystals 
are given in Table 2 for k=oo ,  20, 15, 10, 5, 2 and 1. A 
study of this table reveals the following: 

(i) For a given k, as n increases, the percentage error 
in (z~) increases. It therefore seems better to confine 
the higher moment test to n = 2 or 3. 
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(ii) A non-centrosymmetric crystal can never be 
mistaken for a centrosymmetric crystal if this type of 
error alone is present. However, when k is small (say 
k~_5) there is a possibility that a centrosymmetric 
crystal will be mistaken for a non-centrosymmetric 
crystal. 

(iii) The region of wrong assignment or ambiguities 
is confined to the values of k < 15. 

The influence of unobserved reflexions 
on the higher-moment test 

Let h be the threshold value of the intensity that can 
be measured. That is, the relation between Io and I is 
expressed as 

I for I>_It (29) 
Io= 0 for I < h .  

We shall write 
z t = h l ( I ) = h / Z  . (30) 

Non-centrosymmetric crystal 

From (29) it is clear that Io is distributed in ac- 
cordance with 

{ 1  
P(Io) = - ~ e x p ( - I o / X )  for I>I t  (31) 

0 for I < I t .  

The nth moment  of Io is therefore given by 

l l~ ln  ( I  n) = -~- exp ( - I o / X ) d l o .  (32) 

Making the substitution I o / S = x  in (32), we obtain 

7 (In) = Z  n x n exp ( - x ) d x  
z t  

=Zn[F(n+  1 ) -  ?:(n + 1,zt)], (33) 

from which we obtain, by putting n--  1, 

gl= ( Io ) /X= l - ?,(2,zt)=(1 + zt) exp ( -  zt) , (34) 

in agreement with the earlier result (R-S-W).  The nth 
moment  of Zo is given by 

(zn) = ( In) l ( Io)  n= (Xn)/(glS) n 

1 g~, [r(n+ 1)- y(n+ 1,z0], (35) 

where we have used (33) and (34). Since (z  n) = F(n + 1), 
(35) can be written 

(zn)=fln(1) ( zn)  , (36) 
where 

1 [ 1  1 
fin(l) = g--~l F ( n +  1---------) ~,(n+ 1,zt)]. (37) 

The expressions for fin(l) for n = 2 ,  3, 4 and 5 are: 

exp (zt) [1 +zt+½z2t] (38a) 
/72(1) - (1 + zt) 2 

exp (2zt) [1 + zt+½z2t +~zt 3] (38b) 
f13(1) = (1+ zt) 3 

exp(3zt) [ l+zt+½z2t+ 3 1 4 f14(1) ----- (1 _t.. Zt)4 ~Zt'qt'-~-~Z,] (38C) 

exp (4zt) [1 + zt + x~2-1 3 1 4 1 5 
f ls(1)-  (1 .÷ zt) 5 z',t -r-6zt "+'-~-xzt "+'x-~--azt] , 

(38d) 
where we have used the recurrence relation (Jahnke-  
Emde-Losch,  1960, p. 14): 

y(n+ 1 , x ) = n ~ ( n , x ) - x  n exp ( - x )  (39) 

and the relation 

y(1, x) = exp ( -  x)dx = 1 - exp ( -  x) .  

It is clear that as z t -+ O, fin(l)--~ 1, so that ( zn ) -+  
(z  n) as required. 

Centrosymmetric crystal 
From (29) the probability density function of Io can 
be written in the form 

(2re Z lo) -3 exp ( - l o / 2  S )  for I> h 
P( lo )=  0 for I < h ,  (40) 

so that the nth moment  of Io will be 

1 
l~/"-1/2 exp ( - I o / 2 S ) d l o .  (41) ( I n ) -  V2zr~ ,)1, o 

Making the substitution lo/2 Z = x  in (41) we obtain 

? (2 Z)  n x n-~ exp ( -  x)dx 
( I n ) -  ]~re ,,,12 

= (2Z)n  [F(n+½)-Y(n+½,½zt)] .  (42) 

Table 2. Values o f  the higher moments o f  the normal&ed intensity as a function o f  k 
C= Centrosymmetric crystal 

Subscript n to A or C denotes the nth moment 
A = Non-centrosymmetric crystal 

C4 
105"0 

57-29 
40"56 
25-99 
11"26 
6.12 

k A2 C2 A3 C3 A4 
oo 2"000 3"000 6"000 15-00 24"00 
20 1.909 2"725 5"229 11 "09 18"30 
15 1-882 2-675 5-020 10-77 16-91 
10 1"833 2"552 4"6517 9"36 14"63 
5 1"714 2.297 3"857 7"13 10"29 
2 1"500 1"902 2.700 4"41 5"40 
1 1"333 1.637 2"000 3"07 3.20 

A5 
120"0 
76"87 
67.63 
53"62 
30"86 
11"57 
5"33 

C5 
945 

425 
170 
104 
31 
13 

AC21-2 
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Putting n =  1 in (42) and using the relation (Erdelyi, 

1954, p.295)" ~(½,x2) = l/re erf (x) (43) 

we obtain 

gl = ( Io ) / -  r =  1 - e r f ( V ~ )  + z~ exp ( - z d 2 ) ,  
(44) 

which agrees with that obtained by R-S-W. The nth 
moment of Zo can be obtained from (42) as 

(z'~)= (I'~)/(g, X) n 

1 2 n 
- g 7  (45) 

Since (zn)=(2n/l/rc)F(n+½), (45) can be written 

(Zo") =Pn(i)  ( zn ) ,  (46) 
where 

1 1 1  - 1 1 1 ]  fin(l) = g---~- r ( n  + ½~" ?(n + ~-, ~zt) . (47) 

The expressions for fin(i) for n =2,  3, 4 and 5 are: 

'[ f2(i) = g--~ 1 - e f t  (g~t/z) 

+ exp 
(48a) 

fl3(i) = g--~- 1 - e r f  (l/~t/2) 

+ ( 2 z t ) ~  (l+½zt+lA~z~)exp(-zt/z)] 

(48b) 

fi4(i) = g---~- 1 - e f t  (]/~/2) 

] + zt (1 + ]zt + ~-~z~ + 1 3 a--6-ezt) x exp ( -  zt/2) 

(48c) 

l[ 
fs(i)  = g--~ 1 - e r f  (]//~t/2) 

2 
+ .(--~-z, .) (1 + ½zt+~zt2+-i-~o sz~ + 9--~sz~)exp(-zt/z)_[ 

q 

(48d) 

where we have used (39), (43) and (47). It is clear that 
as zt 1 so that (Zo") (zn) as required. 

The values of (Zo") for n = 2, 3, 4 and 5 are given in 
Table 3 both for centrosymmetric and non-centrosym- 
metric crystals for the values of zt = 0, 0. l, 0.2 . . . .  0.5. 
A study of Table 3 reveals the following: 

(i) For a given zt the percentage error in (zo") in- 
creases as n increases. However, the percentage increase 
is small compared with the deviations caused by ran- 
dom errors or systematic errors. 

(ii) For a given n, as zt increases the percentage error 
in (zno) increases, but slowly compared with the other 
kinds of error. 

(iii) When n = 2 or 3 no ambiguities may arise even 
when z t -0 .4 .  Thus, compared with other statistical 
criteria (see R-S-W),  the higher-moment test seems to 
be the best for crystals whose weighted reciprocal lat- 
tice contains a large percentage of weak reflexions. For 
example, the presence of even 407o of unobserved 
reflexions in centrosymmetric crystals and 3 0 ~  in 
non-centrosymmetric crystals does not appreciably 
affect the higher-moment test. 

The influence of errors systematic as a function 
of s(sin 0/~) on the higher-moment test 

An important source of error of this kind would arise 
from the error in determining the local average in- 
tensity (I)aet from the course of the ( I )  curve (which 
we assume as that obtained from a set of accurately 
estimated intensities). Following R - S - W  we may 
write 

( I ) ae t=  ( I ) [1  + e(s)] 

where e(s) is a function of s and will be never large 
compared with unity in practical cases. Thus 

Zaet= z][1 + e(s)]. 

The value of (z,~¢t) will actually be determined by 
the distribution of e(s), which is difficult to calculate. 
However, it is clear that (z~et) will be > or < (zn),  
depending on the distribution of e. It is however to be 
expected that the errors in the ( /)-curve are more 
serious for the (z n) test than for other statistical 
tests. For example, an underestimation of the value of 
(I)aet for even a few reflexions for which z>  1 will 
cause a large increase in the value of the higher order 
moments. In a similar way, an overestimation of (I)det 
for a few reflexions for which z>> 1 would decrease the 
value of (z n) considerably. The seriousness of this 
sort of error increases as n increases in value and hence 

Table 3. Values of  the higher moments of  the normalized intensity as a function of  zt 
C = Centrosymmetric crystal; A = Non-centrosymmetric crystal 

Subscript n to A or C denotes the nth moment  

zt A2 C2 A3 C3 A4 C4 A5 C5 
0"0 2"000 3"000 6"000 15"00 24"00 105"0 120"0 945 
O" 1 2"019 3"049 6"085 15"37 24"45 108"5 122"9 984 
0"2 2"070 3" 136 6"326 16"06 25"76 115"0 131" 1 1058 
0"3 2"149 3"247 6"715 16"95 27"90 123"6 144"8 1159 
0"4 2"253 3" 378 7"254 18"04 30"94 134"4 164"9 1286 
0"5 2"381 3"525 7"953 19"32 35"02 147"3 192"5 1442 
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it is necessary to confine the value of n to n =2  or 3, 
and also it is necessary to compute ( I )  for each 
reflexion accurately from an accurate ( I )  curve. 

Conclusion 

The above studies indicate that it may not be useful 
to conduct higher-moment tests with moments of very 
high order. It would be profitable, in order to avoid 
wrong assignments or ambiguities, to use only (z 2) 
and (z 3) in practical cases. The presence of both the 
random and systematic errors of the 'extinction' type 
in a given case produce deviations which are opposed 
and thus tend to cancel. As has been pointed out earlier 
(R-S-W) the error in obtaining ( I )  is an adverse 
type and hence care must be taken in the evaluation of 
( I )  for each reflexion from an accurate curve of ( I )  
versus s. Unobserved reflexions do not produce any 
serious deviations in the case of higher moments. Thus, 
the higher-moment test is better suited to crystals 
which contain a large percentage (as high as 40%) of 
unobserved reflexions. 

APPENDIX 

When the value of k is large we can write equation 
(26) in the form 

lim (zn) = lim k n+* n (n ) (-1) '  .(A-l) 
I=k-+oo k--+oo ~ )X=o j (2j+k)* 

Since gl -+ 1 as k ~ c~, (A-l)  can be written 

lim k n ~  (n) ( 2_Jk)-~ 
I=k--+c~ j=o j ( -1 ) J  1+ 

(,) 
= k - + c ~  1=o j ( -1)1 

where we have used the binomial theorem and also the 
notation r - - ( -½) .  We can split the summation over i 
into two summations and rewrite (A-2) as 

lira 2 ~ ( n )  
I=k---~ooj=0 j ( -1 ) J  

[~o  r(r- X). . . ( r - i  + l) ] × (2j) l k n-~ (A-3) 
i t! 

since the second summation which involves powers of 
(I/k) vanishes. We can rewrite (A-3) as 

= lim ~ r ( r - 1 ) . . . ( r - i + l )  
k--> c~ i=o il 

x2 'k  n-'  2~ ( n ) f i ( - 1 ) '  
j=0 j 

(A-4) 

Using equation (12.17) in p.63 of Feller (1960), it can 
be shown that 

n 
( j )  f l ( - 1 ) '  

j=O 

=(_l)n ~ (n j=0 j )  f l ( -1)n-t=n!~(i-n)"  (A-5) 

From (A--4) and (A-5) we obtain 

I=  lim ~ r ( r - 1 )  . . . ( r -  i + l ) 

k ~ oo/=0 i! 
× 2~k n-~ ( -  1)nnt d(i-n) 

= ( -  1) n2 n r ( r -  1 ) . . . ( r - n +  1) 

= 1 . 3 . 5 . . . ( 2 n -  1), (A-6) 

since r was used to stand for (-½).  We can write 
(A-6) as 

I =  ( 2 n - l ) !  _ ( 2 n - l ) !  
2 . 4 . 6 . . . ( 2 n - 2 )  2 n - l ( n - 1 ) t  

F(2n) 2 n 
= 2 n-x F(n) - l/n /'(n+½-), (A-7) 

where we have used the duplication formula for gamma 
function (Sneddon, 1961). The right hand side of 
(A-7) is nothing but (z n) so that 

I= (z n) (A-S) 
as required. 

The author wishes to express his thanks to Professor 
G.N.Ramachandran for valuable discussions. He is 
also grateful to Professor R.Srinivasan and Dr K. 
Venkatesan for their comments. 
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